

JupyterLab Tabular Data Editor Documentation

Manipulate your tabular data responsively and effectively within JupyterLab. Try it on Binder [https://mybinder.org/v2/gh/jupytercalpoly/jupyterlab-tabular-data-editor/master?urlpath=lab].

[image: _images/showcase1.gif]

Getting Started

	Overview

	Installation

	Changelog

User Guide

	User Experience

	Features

Contributor Guide

	Codebase Orientation

	Contributing to the Tabular Data Editor

Overview

Manipulate your tabular data responsively and effectively within JupyterLab.

[image: ../_images/showcase.gif]
Data is an integral part of many JupyterLab workflows, but a native data editing tool is non-existent. The JupyterLab Tabular Data Editor provides an interface to edit your data files side-by-side with Jupyter notebooks.

With this extension, you can create csv files from scratch, navigate through millions of cells smoothly, and manage your data all within JupyterLab.

This extension streamlines the editing process with a refined suite of commands that help you prepare your data for further work in machine learning, scientific computing, or other data-driven tasks.

Installation

Requirements

JupyterLab >= 2.0

Install Nodejs

conda install -c conda forge nodejs

Install

jupyter labextension install jupyterlab-tabular-data-editor

Contributing

Install

The jlpm command is JupyterLab’s pinned version of
yarn [https://yarnpkg.com] that is installed with JupyterLab. You may use
yarn or npm in lieu of jlpm below.

Clone the repo to your local environment
Move to jupyterlab-tabular-data-editor directory

Install dependencies
jlpm
Build Typescript source
jlpm build
Link your development version of the extension with JupyterLab
jupyter labextension install .
Rebuild Typescript source after making changes
jlpm build
Rebuild JupyterLab after making any changes
jupyter lab build

You can watch the source directory and run JupyterLab in watch mode to watch for changes in the extension’s source and automatically rebuild the extension and application.

Watch the source directory in another terminal tab
jlpm watch
Run jupyterlab in watch mode in one terminal tab
jupyter lab --watch

Now every change will be built locally and bundled into JupyterLab. Be sure to refresh your browser page after saving file changes to reload the extension (note: you’ll need to wait for webpack to finish, which can take 10s+ at times).

Uninstall

jupyter labextension uninstall jupyterlab-tabular-data-editor

Changelog

v1.0.0

	Extension is now compatible with Jupyterlab 3.0

v0.7.5

	Bug fixes with moving shadow/line

v0.7.4

	Backspace keyboard shortcut working

	Fixes small bug with data types not updating on an undo/redo that changes the type

	Save dialog bug fix

	Created a selectCell method in the PaintedGrid

	Draw icon refactor

	Removed serializer and old model files

v0.7.3

	Datagrid styling changes

	Adjusts the position and style of the icons

v0.7.2

	Fixed the move line not accounting for scroll

	Package updated from @tde-csvviewer to @jupyterlab/csvviewer + Launcher handled in a way that we don’t need to change _computeRowOffsets

	Fixed right-click column header results in move shadow

v0.7.1

	Added new files to the demo folder

	Ghost row/columns bug fixes

	Refactor data detection to format data

v0.7.0

	Can now edit headers after scrolling

	Hover feature for ghost row and column

	Clearing rows and columns bug fix

	Pointer cursor for ghost row/column

	Modified icon painting setup to work with absolute positioning rather than relative positioning

	Adding data detection icons

	Styling for data detection icons

	Replace all bug fix

	Makes the text “Column 1” appear on the column header when launching a csv file

v0.6.0

	Cell data types for the body region

	Multi insert/remove for rows/columns

	WCAG AAA approved search match colors

	Ghost row and column feature added

	Fix the header displaying the wrong value on edit

	Serialization fix for data sets larger than 500 rows

	Inserting/removing column bug fixes

	Fixed console error when searching for a match

v0.5.0

	Shadow/line fixes when moving + handler.ts refactoring

	Create a new csv file from launcher

	Reduced column header and row height

	Edit Headers

	Save keybinding

v0.4.0

	Selection UX for Undo/Redo

	Right-click selection fixes

	Litestore refactor

v0.3.0

	Multiple context menus

	Clear contents (rows, columns, selections)

v0.2.0

	Copy, cut, and paste

	Undo and redo

	Implemented Litestore

	Move columns and rows

	Theme manager (light/dark)

	Search and replace

	Command Toolbar

	Binder link setup

v0.1.0

	Editable cells

	Alphabetic column header

	Save CSV file

	Delete rows and columns

	Add rows and columns

User Experience

The JupyterLab Tabular Data Editor provides a versatile interface to support your data editing process.

Toolbar

The toolbar has the following functionalities: save, undo, redo, cut, copy, and paste. In addition, you can format your data based on data types by toggling on Format Data.

[image: ../_images/Toolbar.png]

Context Menus

You can access the context menu by right-clicking. Commands within the context menu adjust depending on what’s selected and where you right-click on the datagrid.

[image: ../_images/context-menus.gif]

Keyboard Shortcuts

You can manipulate your data and navigate the datagrid through keyboard shortcuts.

General extension shortcuts

	Keypress

	Command

	Ctrl + X

	Cut the selected item and copy it to the clipboard

	Ctrl + C

	Copy the selected item to the clipboard

	Ctrl + V

	Paste the contents of the clipboard

	Ctrl + Z

	Undo the previous action

	Shift + Ctrl + Z

	Redo the previous action

	Ctrl + S

	Save the current file

	Ctrl + F

	Open the Find window

	Space

	Edit a cell

Moving around in the datagrid

	Keypress

	Command

	Left/Right Arrow

	Move one cell to the left or right

	Ctrl + Left/Right Arrow

	Move to the farthest cell left or right in the row

	Up/Down Arrow

	Move one cell up or down

	Ctrl + Up/Down Arrow

	Move to the top or bottom cell in the column

	Tab

	Move one cell to the right

	Shift + Tab

	Move one cell to the left

	Enter

	Move one cell down

	Shift + Enter

	Move one cell up

Selecting cells

	Keypress

	Command

	Shift + Left/Right Arrow

	Extend the cell selection one cell to the left or right

	Shift + Up/Down Arrow

	Extend the cell selection one cell up or down

	Shift + Ctrl + Left/Right Arrow

	Extend the cell selection to the farthest cell left or right

	Shift + Ctrl + Up/Down Arrow

	Extend the cell selection to the farthest cell up or down

Features

Launch new files and quickly add rows and columns

[image: ../_images/csvlauncher.gif]

Seamlessly rearrange your data table

[image: ../_images/moving.gif]

Insert and remove multiple rows and columns

[image: ../_images/multiremoveandinsert.gif]

Format your data with a click of a button

[image: ../_images/auto-format.gif]

Search and replace with ease

[image: ../_images/searchandreplace.gif]

Codebase Orientation

This codebase was adapted from JupyterLab’s csvviewer [https://github.com/jupyterlab/jupyterlab/tree/master/packages/csvviewer] and csvviewer-extension [https://github.com/jupyterlab/jupyterlab/tree/master/packages/csvviewer-extension] packages.

Directories

The repository contains a number of top-level directories, the contents of which
are described here.

Source Code: src/

This contains the primary TypeScript files for this extension, which are compiled to JavaScript.

Binder setup: binder/

This contains an environment specification for repo2docker which allows
the repository to be tested on mybinder.org [https://mybinder.org].

Demo: demo/

The demo/ directory contains sample csv files and Jupyter notebooks that highlight some features of this extension.

Design: design/

A directory containing a series of design documents and prototypes motivating various
choices made in the course of building the Tabular Data Editor.

Documentation: docs/

This directory contains the Sphinx project for this documentation.
You can create an environment to build the documentation using conda create -f environment.yml,
and you can build the documentation by running make html.
The entry point to the built docs will then be in docs/build/index.html.

Styling: style/

This directory contains the icon assets and css styles for this extension.

Testing: test/

Tests for the TypeScript files in the src/ directory.
These test files pull in the TypeScript sources and exercise their APIs.

Run jlpm test from the root directory to run all tests for this extension

Test Utilities: testutils/

A small npm package which is aids in running the tests in tests/.

Contributing to the Tabular Data Editor

If you’re reading this section, you’re probably interested in
contributing to tabular Data Editor. Welcome and thanks for your interest in
contributing!

Please take a look at the Contributor documentation, familiarize
yourself with using JupyterLab, and introduce yourself to the community
(on the mailing list or discourse) and share what area of the project
you are interested in working on. Please also see the Jupyter Community
Guides [https://jupyter.readthedocs.io/en/latest/community/content-community.html].

We have labeled some issues as good first
issue [https://github.com/jupytercalpoly/jupyterlab-tabular-data-editor/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22]
or help
wanted [https://github.com/jupytercalpoly/jupyterlab-tabular-data-editor/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22+label%3A%22help+wanted%22]
that we believe are good examples of small, self-contained changes. We
encourage those that are new to the code base to implement and/or ask
questions about these issues.

Table of contents

	General Guidelines for Contributing

	Submitting a Pull Request Contribution

	Setting Up a Development Environment

	Installing JupyterLab

	Performance Testing

	Debugging in the Browser

	Writing Documentation

	Testing Changes to External Packages

	Keyboard Shortcuts

	Screenshots and Animations

	Notes

General Guidelines for Contributing

For general documentation about contributing to Jupyter projects, see
the Project Jupyter Contributor
Documentation [https://jupyter.readthedocs.io/en/latest/contributing/content-contributor.html]
and Code of
Conduct [https://github.com/jupyter/governance/blob/master/conduct/code_of_conduct.md].

All source code is written in
TypeScript [http://www.typescriptlang.org/Handbook]. See the Style
Guide [https://github.com/jupyterlab/jupyterlab/wiki/TypeScript-Style-Guide].

All source code is formatted using prettier [https://prettier.io].
When code is modified and committed, all staged files will be
automatically formatted using pre-commit git hooks (with help from the
lint-staged [https://github.com/okonet/lint-staged] and
husky [https://github.com/typicode/husky] libraries). The benefit of
using a code formatter like prettier is that it removes the topic of
code style from the conversation when reviewing pull requests, thereby
speeding up the review process.

You may also use the prettier npm script (e.g. npm run prettier or
yarn prettier or jlpm prettier) to format the entire code base.
We recommend installing a prettier extension for your code editor and
configuring it to format your code with a keyboard shortcut or
automatically on save.

Submitting a Pull Request Contribution

Generally, an issue should be opened describing a piece of proposed work
and the issues it solves before a pull request is opened.

Issue Management

Opening an issue lets community members participate in the design
discussion, makes others aware of work being done, and sets the stage
for a fruitful community interaction. A pull request should reference
the issue it is addressing. Once the pull request is merged, the issue
related to it will also be closed. If there is additional discussion
around implemementation the issue may be re-opened.

Setting Up a Development Environment

You can launch a binder with the latest JupyterLab Tabular Editor to test
something (this may take a few minutes to load):

[image: ../_images/badge_logo.svg]
 [https://mybinder.org/v2/gh/jupytercalpoly/jupyterlab-tabular-data-editor/master?urlpath=lab/]
Installing Node.js and jlpm

Building JupyterLab from its GitHub source code requires Node.js. The
development version requires Node.js version 10+, as defined in the
engines specification in
dev_mode/package.json [https://github.com/jupyterlab/jupyterlab/blob/master/dev_mode/package.json].

If you use conda, you can get it with:

conda install -c conda-forge 'nodejs'

If you use Homebrew [http://brew.sh] on Mac OS X:

brew install node

You can also use the installer from the Node.js [https://nodejs.org]
website.

To check which version of Node.js is installed:

node -v

Installing JupyterLab

JupyterLab requires Jupyter Notebook version 4.3 or later.

If you use conda, you can install notebook using:

conda install -c conda-forge notebook

You may also want to install nb_conda_kernels to have a kernel
option for different conda
environments [https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html]

conda install -c conda-forge nb_conda_kernels

If you use pip, you can install notebook using:

pip install notebook

Fork the JupyterLab
repository [https://github.com/jupyterlab/jupyterlab].

Once you have installed the dependencies mentioned above, use the
following steps:

git clone https://github.com/<your-github-username>/jupyterlab.git
cd jupyterlab
pip install -e .
jlpm install
jlpm run build # Build the dev mode assets (optional)
jlpm run build:core # Build the core mode assets (optional)
jupyter lab build # Build the app dir assets (optional)

Notes:

	A few of the scripts will run “python”. If your target python is
called something else (such as “python3”) then parts of the build
will fail. You may wish to build in a conda environment, or make an
alias.

	Some of the packages used in the development environment require
Python 3.0 or higher. If you encounter an ImportError during the
installation, make sure Python 3.0+ is installed. Also, try using the
Python 3.0+ version of pip or pip3 install -e . command to
install JupyterLab from the forked repository.

	The jlpm command is a JupyterLab-provided, locked version of the
yarn [https://yarnpkg.com/en] package manager. If you have
yarn installed already, you can use the yarn command when
developing, and it will use the local version of yarn in
jupyterlab/yarn.js when run in the repository or a built
application directory.

	If you decide to use the jlpm command and encounter the
jlpm: command not found error, try adding the user-level bin
directory to your PATH environment variable. You already
installed jlpm along with JupyterLab in the previous command, but
jlpm might not be accessible due to PATH environment variable
related issues. If you are using a Unix derivative (FreeBSD, GNU /
Linux, OS X), you can achieve this by using
export PATH="$HOME/.local/bin:$PATH" command.

	At times, it may be necessary to clean your local repo with the
command npm run clean:slate. This will clean the repository, and
re-install and rebuild.

	If pip gives a VersionConflict error, it usually means that
the installed version of jupyterlab_server is out of date. Run
pip install --upgrade jupyterlab_server to get the latest
version.

	To install JupyterLab in isolation for a single conda/virtual
environment, you can add the --sys-prefix flag to the extension
activation above; this will tie the installation to the
sys.prefix location of your environment, without writing anything
in your user-wide settings area (which are visible to all your envs):

	You can run jlpm run build:dev:prod to build more accurate
sourcemaps that show the original Typescript code when debugging.
However, it takes a bit longer to build the sources, so is used only
to build for production by default.

If you are using a version of Jupyter Notebook earlier than 5.3, then
you must also run the following command to enable the JupyterLab server
extension:

jupyter serverextension enable --py --sys-prefix jupyterlab

For installation instructions to write documentation, please see
Writing Documentation

Run JupyterLab

Start JupyterLab:

jupyter lab --watch

Run the Tests

jlpm test

We use jest for all tests, so standard jest workflows apply.
Tests can be debugged in either VSCode or Chrome. It can help to add an
it.only to a specific test when debugging. All of the test*
scripts in each package accept jest cli
options [https://jestjs.io/docs/en/cli.html].

VSCode Debugging

To debug in VSCode, open a package folder in VSCode. We provide a launch
configuration in each package folder. In a terminal, run
jlpm test:debug:watch. In VSCode, select “Attach to Jest” from the
“Run” sidebar to begin debugging. See VSCode docs on
debugging [https://code.visualstudio.com/docs/editor/debugging] for
more details.

Chrome Debugging

To debug in Chrome, run jlpm test:debug:watch in the terminal. Open
Chrome and go to chrome://inspect/. Select the remote device and
begin debugging.

Testing Utilities

There are some helper functions in testutils (which is a public npm
package called @jupyterlab/testutils) that are used by many of the
tests.

For tests that rely on @jupyterlab/services (starting kernels,
interacting with files, etc.), there are two options. If a simple
interaction is needed, the Mock namespace exposed by testutils
has a number of mock implmentations (see testutils/src/mock.ts). If
a full server interaction is required, use the JupyterServer class.

We have a helper function called testEmission to help with writing
tests that use Lumino signals, as well as a framePromise
function to get a Promise for a requestAnimationFrame. We
sometimes have to set a sentinel value inside a Promise and then
check that the sentinel was set if we need a promise to run without
blocking.

Performance Testing

If you are making a change that might affect how long it takes to load
JupyterLab in the browser, we recommend doing some performance testing
using Lighthouse [https://github.com/GoogleChrome/lighthouse]. It
let’s you easily compute a number of metrics, like page load time, for
the site.

To use it, first build JupyterLab in dev mode:

jlpm run build:dev

Then, start JupyterLab using the dev build:

jupyter lab --dev --NotebookApp.token='' --no-browser

Now run Lighthouse against this local server and show the results:

jlpm run lighthouse --view

[image: images/lighthouse.png]

Using throttling

Lighthouse recommends using the system level
comcast [https://github.com/tylertreat/comcast] tool to throttle
your network connection and emulate different scenarios. To use it,
first install that tool using go:

go get github.com/tylertreat/comcast

Then, before you run Lighthouse, enable the throttling (this requires
sudo):

run lighthouse:throttling:start

This enables the “WIFI (good)” preset of comcast, which should emulate
loading JupyterLab over a local network.

Then run the lighthouse tests:

jlpm run lighthouse [...]

Then disable the throttling after you are done:

jlpm run lighthouse:throttling:stop

Comparing results

Performance results are usually only useful in comparison to other
results. For that reason, we have included a comparison script that can
take two lighthouse results and show the changes between them.

Let’s say we want to compare the results of the production build of
JupyterLab with the normal build. The production build minifies all the
JavaScript, so should load a bit faster.

First, we build JupyterLab normally, start it up, profile it and save
the results:

jlpm build:dev
jupyter lab --dev --NotebookApp.token='' --no-browser

in new window
jlpm run lighthouse --output json --output-path normal.json

Then rebuild with the production build and retest:

jlpm run build:dev:prod
jupyter lab --dev --NotebookApp.token='' --no-browser

in new window
jlpm run lighthouse --output json --output-path prod.json

Now we can use compare the two outputs:

jlpm run lighthouse:compare normal.json prod.json

This gives us a report of the relative differences between the audits in
the two reports:

Resulting Output

normal.json -> prod.json

First Contentful Paint

- -62% Δ

- 1.9 s -> 0.7 s

- First Contentful Paint marks the time at which the first text or
image is painted. Learn
more [https://developers.google.com/web/tools/lighthouse/audits/first-contentful-paint].

First Meaningful Paint

- -50% Δ

- 2.5 s -> 1.3 s

- First Meaningful Paint measures when the primary content of a
page is visible. Learn
more [https://developers.google.com/web/tools/lighthouse/audits/first-meaningful-paint].

Speed Index

- -48% Δ

- 2.6 s -> 1.3 s

- Speed Index shows how quickly the contents of a page are visibly
populated. Learn
more [https://developers.google.com/web/tools/lighthouse/audits/speed-index].

Estimated Input Latency

- 0% Δ

- 20 ms -> 20 ms

- Estimated Input Latency is an estimate of how long your app takes
to respond to user input, in milliseconds, during the busiest 5s
window of page load. If your latency is higher than 50 ms, users
may perceive your app as laggy. Learn
more [https://developers.google.com/web/tools/lighthouse/audits/estimated-input-latency].

Max Potential First Input Delay

- 9% Δ

- 200 ms -> 210 ms

- The maximum potential First Input Delay that your users could
experience is the duration, in milliseconds, of the longest task.
Learn
more [https://developers.google.com/web/updates/2018/05/first-input-delay].

First CPU Idle

- -50% Δ

- 2.5 s -> 1.3 s

- First CPU Idle marks the first time at which the page’s main
thread is quiet enough to handle input. Learn
more [https://developers.google.com/web/tools/lighthouse/audits/first-interactive].

Time to Interactive

- -52% Δ

- 2.5 s -> 1.2 s

- Time to interactive is the amount of time it takes for the page
to become fully interactive. Learn
more [https://developers.google.com/web/tools/lighthouse/audits/consistently-interactive].

Avoid multiple page redirects

- -2% Δ

- Potential savings of 10 ms -> Potential savings of 10 ms

- Redirects introduce additional delays before the page can be
loaded. Learn
more [https://developers.google.com/web/tools/lighthouse/audits/redirects].

Minimize main-thread work

- -54% Δ

- 2.1 s -> 1.0 s

- Consider reducing the time spent parsing, compiling and executing
JS. You may find delivering smaller JS payloads helps with this.

JavaScript execution time

- -49% Δ

- 1.1 s -> 0.6 s

- Consider reducing the time spent parsing, compiling, and
executing JS. You may find delivering smaller JS payloads helps
with this. Learn
more [https://developers.google.com/web/tools/lighthouse/audits/bootup].

Preload key requests

- -100% Δ

- Potential savings of 240 ms ->

- Consider using <link rel=preload> to prioritize fetching
resources that are currently requested later in page load. Learn
more [https://developers.google.com/web/tools/lighthouse/audits/preload].

Uses efficient cache policy on static assets

- 0% Δ

- 1 resource found -> 1 resource found

- A long cache lifetime can speed up repeat visits to your page.
Learn
more [https://developers.google.com/web/tools/lighthouse/audits/cache-policy].

Avoid enormous network payloads

- -86% Δ

- Total size was 30,131 KB -> Total size was 4,294 KB

- Large network payloads cost users real money and are highly
correlated with long load times. Learn
more [https://developers.google.com/web/tools/lighthouse/audits/network-payloads].

Minify JavaScript

- -100% Δ

- Potential savings of 23,041 KB ->

- Minifying JavaScript files can reduce payload sizes and script
parse time. Learn
more [https://developers.google.com/speed/docs/insights/MinifyResources].

Enable text compression

- -86% Δ

- Potential savings of 23,088 KB -> Potential savings of 3,112 KB

- Text-based resources should be served with compression (gzip,
deflate or brotli) to minimize total network bytes. Learn
more [https://developers.google.com/web/tools/lighthouse/audits/text-compression].

Avoid an excessive DOM size

- 0% Δ

- 1,268 elements -> 1,268 elements

- Browser engineers recommend pages contain fewer than ~1,500 DOM
elements. The sweet spot is a tree depth < 32 elements and fewer
than 60 children/parent element. A large DOM can increase memory
usage, cause longer style
calculations [https://developers.google.com/web/fundamentals/performance/rendering/reduce-the-scope-and-complexity-of-style-calculations],
and produce costly layout
reflows [https://developers.google.com/speed/articles/reflow].
Learn
more [https://developers.google.com/web/tools/lighthouse/audits/dom-size].

Debugging in the Browser

All methods of building JupyterLab produce source maps. The source maps
should be available in the source files view of your browser’s
development tools under the webpack:// header.

When running JupyterLab normally, expand the ~ header to see the
source maps for individual packages.

When running in --dev-mode, the core packages are available under
packages/, while the third party libraries are available under
~. Note: it is recommended to use jupyter lab --watch --dev-mode
while debugging.

When running a test, the packages will be available at the top level
(e.g. application/src), and the current set of test files available
under /src. Note: it is recommended to use jlpm run watch in the
test folder while debugging test options. See
above for more info.

Writing Documentation

Documentation is written in Markdown and reStructuredText. In
particular, the documentation on our Read the Docs page is written in
reStructuredText. To ensure that the Read the Docs page builds, you’ll
need to install the documentation dependencies with pip:

pip install -r docs/requirements.txt

To test the docs run:

py.test --check-links -k .md . || py.test --check-links -k .md --lf .

The Read the Docs pages can be built using make:

cd docs
make html

Or with jlpm:

jlpm run docs

Writing Style

	The documentation should be written in the second person, referring
to the reader as “you” and not using the first person plural “we.”
The author of the documentation is not sitting next to the user, so
using “we” can lead to frustration when things don’t work as
expected.

	Avoid words that trivialize using JupyterLab such as “simply” or
“just.” Tasks that developers find simple or easy may not be for
users.

	Write in the active tense, so “drag the notebook cells…” rather
than “notebook cells can be dragged…”

	The beginning of each section should begin with a short (1-2
sentence) high-level description of the topic, feature or component.

	Use “enable” rather than “allow” to indicate what JupyterLab makes
possible for users. Using “allow” connotes that we are giving them
permission, whereas “enable” connotes empowerment.

User Interface Naming Conventions

Documents, Files, and Activities

Files are referrred to as either files or documents, depending on the
context.

Documents are more human centered. If human viewing, interpretation,
interaction is an important part of the experience, it is a document in
that context. For example, notebooks and markdown files will often be
referring to as documents unless referring to the file-ness aspect of it
(e.g., the notebook filename).

Files are used in a less human-focused context. For example, we refer to
files in relation to a file system or file name.

Activities can be either a document or another UI panel that is not file
backed, such as terminals, consoles or the inspector. An open document
or file is an activity in that it is represented by a panel that you can
interact with.

Element Names

	The generic content area of a tabbed UI is a panel, but prefer to
refer to the more specific name, such as “File browser.” Tab bars
have tabs which toggle panels.

	The menu bar contains menu items, which have their own submenus.

	The main work area can be referred to as the work area when the name
is unambiguous.

	When describing elements in the UI, colloquial names are preferred
(e.g., “File browser” instead of “Files panel”).

The majority of names are written in lower case. These names include:

	tab

	panel

	menu bar

	sidebar

	file

	document

	activity

	tab bar

	main work area

	file browser

	command palette

	cell inspector

	code console

The following sections of the user interface should be in title case,
directly quoting a word in the UI:

	File menu

	Files tab

	Running panel

	Tabs panel

	Single-Document Mode

The capitalized words match the label of the UI element the user is
clicking on because there does not exist a good colloquial name for the
tool, such as “file browser” or “command palette”.

See interface for descriptions of elements in the UI.

Testing Changes to External Packages

Linking/Unlinking Packages to JupyterLab

If you want to make changes to one of JupyterLab’s external packages
(for example, Lumino [https://github.com/jupyterlab/lumino] and test
them out against your copy of JupyterLab, you can easily do so using the
link command:

	Make your changes and then build the external package

	Register a link to the modified external package

	navigate to the external package dir and run jlpm link

	Link JupyterLab to modded package

	navigate to top level of your JupyterLab repo, then run
jlpm link "<package-of-interest>"

You can then (re)build JupyterLab (eg jlpm run build) and your
changes should be picked up by the build.

To restore JupyterLab to its original state, you use the unlink
command:

	Unlink JupyterLab and modded package

	navigate to top level of your JupyterLab repo, then run
jlpm unlink "<package-of-interest>"

	Reinstall original version of the external package in JupyterLab

	run jlpm install --check-files

You can then (re)build JupyterLab and everything should be back to
default.

Possible Linking Pitfalls

If you’re working on an external project with more than one package,
you’ll probably have to link in your copies of every package in the
project, including those you made no changes to. Failing to do so may
cause issues relating to duplication of shared state.

Specifically, when working with Lumino, you’ll probably have to link
your copy of the "@lumino/messaging" package (in addition to
whatever packages you actually made changes to). This is due to
potential duplication of objects contained in the MessageLoop
namespace provided by the messaging package.

Keyboard Shortcuts

Typeset keyboard shortcuts as follows:

	Monospace typeface, with spaces between individual keys:
Shift Enter.

	For modifiers, use the platform independent word describing key:
Shift.

	For the Accel key use the phrase: Command/Ctrl.

	Don’t use platform specific icons for modifier keys, as they are
difficult to display in a platform specific way on Sphinx/RTD.

Screenshots and Animations

Our documentation should contain screenshots and animations that
illustrate and demonstrate the software. Here are some guidelines for
preparing them:

	Make sure the screenshot does not contain copyrighted material
(preferable), or the license is allowed in our documentation and
clearly stated.

	If taking a png screenshot, use the Firefox or Chrome developer tools
to do the following:

	set the browser viewport to 1280x720 pixels

	set the device pixel ratio to 1:1 (i.e., non-hidpi, non-retina)

	screenshot the entire viewport using the browser developer
tools. Screenshots should not include any browser elements such as
the browser address bar, browser title bar, etc., and should not
contain any desktop background.

	If creating a movie, adjust the settings as above (1280x720 viewport
resolution, non-hidpi) and use a screen capture utility of your
choice to capture just the browser viewport.

	For PNGs, reduce their size using pngquant --speed 1 <filename>.
The resulting filename will have -fs8 appended, so make sure to
rename it and use the resulting file. Commit the optimized png file
to the main repository. Each png file should be no more than a few
hundred kilobytes.

	For movies, upload them to the IPython/Jupyter YouTube channel and
add them to the
jupyterlab-media [https://github.com/jupyterlab/jupyterlab-media]
repository. To embed a movie in the documentation, use the
www.youtube-nocookie.com website, which can be found by clicking
on the ‘privacy-enhanced’ embedding option in the Share dialog on
YouTube. Add the following parameters the end of the URL
?rel=0&showinfo=0. This disables the video title and related
video suggestions.

	Screenshots or animations should be preceded by a sentence describing
the content, such as “To open a file, double-click on its name in the
File Browser:”.

	We have custom CSS that will add box shadows, and proper sizing of
screenshots and embedded YouTube videos. See examples in the
documentation for how to embed these assets.

To help us organize screenshots and animations, please name the files
with a prefix that matches the names of the source file in which they
are used:

sourcefile.rst
sourcefile_filebrowser.png
sourcefile_editmenu.png

This will help us to keep track of the images as documentation content
evolves.

Notes

	The npm modules are fully compatible with Node/Babel/ES6/ES5. Simply
omit the type declarations when using a language other than
TypeScript.

Index

 _static/ajax-loader.gif

_images/showcase.gif
: File Edit View Run Kernel Tabs Settings Help

+ * c]
= 2 Launcher
M /demo/
o Name - Last Modified
FH datatypes.csv 3 days ago
&9 H survey-data.csv 6 minutes ago

0 & Mem:65.12/2048.00 MB

Python 3

Console

@

Python 3

Other

Terminal

Wi H

Markdown File CSV File

Saving completed

B

Show
Contextual Help

Launcher

_images/showcase1.gif
: File Edit View Run Kernel Tabs Settings Help

+ * c]
= 2 Launcher
M /demo/
o Name - Last Modified
FH datatypes.csv 3 days ago
&9 H survey-data.csv 6 minutes ago

0 & Mem:65.12/2048.00 MB

Python 3

Console

@

Python 3

Other

Terminal

Wi H

Markdown File CSV File

Saving completed

B

Show
Contextual Help

Launcher

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/moving.gif
: File Edit View Run Kernel Tabs Settings Help

H survey-data.csv X

[
B~ ~X 00 Format Data
o Date | Name Likely to Recommend Met Expectations Customer Satisfaction Age e
1 Test1 10 » true Very satisfied » 18-24 years old
Eq 2 2020-08-14 Test2 1 false Very dissatisfied 25-34 years old
3 2020-08-14 Test3 5 true R either satisfied or dissatisfie 35-44 years old
4 2020-08-17 Elliot King 8 true Very satisfied 35-44 years old
& 2020-08-17 Noel Hall 7 false Somewhat satisfied 18-24 years old
o 6 2020-08-17 Robert Wright 8 true Very satisfied 45-54 years old
7 2020-08-18 Addison Lee 9 true Very satisfied 35-44 years old
8 2020-08-18 Abed Glover 7 true Somewhat satisfied 25-34 years old ‘
9 2020-08-18 Avery Malone 6 false Somewhat satisfied 18-24 years old |
10 2020-08-18 Taylor Zhou 8 true Very satisfied 25-34 years old
1 2020-08-18 Sydney Jones 9 true Very satisfied 45-54 years old
12 2020-08-18 Oakley Smith 8 true Very satisfied 45-54 years old
13 2020-08-19 Skylar Lennon 7 true Somewhat satisfied 25-34 years old
14 2020-08-19 Parker Holmes 7 false either satisfied or dissatisfie 18-24 years old
15 2020-08-19 Brooklyn Serrano 9 true Very satisfied 35-44 years old
16 2020-08-19 Kyler Flores 7 false either satisfied or dissatisfie 18-24 years old
17 2020-08-19 Denver Anderson 5 false Somewhat dissatisfied 18-24 years old
18 2020-08-19 Jules Young 7 true Somewhat satisfied 35-44 years old
19 2020-08-20 Blake Ochoa 9 true Very satisfied 25-34 years old
20 2020-08-20 Drew Donaldson 9 true Very satisfied 45-54 years old
21 2020-08-20 Robin Lee 8 true Very satisfied 45-54 years old
22 2020-08-20 Madison Posey 9 true Very satisfied 35-44 years old |
+

0 0 & Mem: 65.98/2048.00 MB Saving completed survey-data.csv

_images/multiremoveandinsert.gif
0)

o

¥ 0 « B

File Edit View Run Kernel

H survey-data.csv

B~ ~X0OD0O

Tabs Settings Help

Format Data

2 2020-08-14
3 2020-08-14
4 2020-08-17
5 2020-08-17
6 2020-08-17
7 2020-08-18
8 2020-08-18
9 2020-08-18
10 2020-08-18
1 2020-08-18
12 2020-08-18
13 2020-08-19
14 2020-08-19
15 2020-08-19
16 2020-08-19
17 2020-08-19
18 2020-08-19
19 2020-08-20
20 2020-08-20
21 2020-08-20
22 2020-08-20
+

Name

Test1
Test2
Test3
Elliot King
Noel Hall
Robert Wright
Addison Lee
Abed Glover
Avery Malone
Taylor Zhou
Sydney Jones
Oakley Smith
Skylar Lennon
Parker Holmes
Brooklyn Serrano
Kyler Flores
Denver Anderson
Jules Young
Blake Ochoa
Drew Donaldson
Robin Lee

Madison Posey

Age

18-24 years old
25-34 years old
35-44 years old
35-44 years old
18-24 years old
45-54 years old
35-44 years old
25-34 years old
18-24 years old
25-34 years old
45-54 years old
45-54 years old
25-34 years old
18-24 years old
35-44 years old
18-24 years old
18-24 years old
35-44 years old
25-34 years old
45-54 years old
45-54 years old
35-44 years old

Customer Satisfaction

Very satisfied
Very dissatisfied
either satisfied or dissatisfie
Very satisfied
Somewhat satisfied
Very satisfied
Very satisfied
Somewhat satisfied
Somewhat satisfied
Very satisfied
Very satisfied
Very satisfied
Somewhat satisfied
either satisfied or dissatisfie
Very satisfied
either satisfied or dissatisfie
Somewhat dissatisfied
Somewhat satisfied
Very satisfied
Very satisfied
Very satisfied
Very satisfied

Likely to Recommend

© ® ©® © N N © N N ® © o o0 N ©0© o N o o

Met Expectations

true
false
true
true
false
true
true
true
false
true
true
true
true
false
true
false
false
true
true
true
true

true

0 {88 Mem: 65.98/2048.00 MB

Saving completed

survey-data.csv

_images/context-menus.gif
[Z Launcher

X | H survey-data.csv

B~ X DD0 Format Data @D
[Date B Name E Likely to Recommend Met Expectations | Customer Satisfaction | [Age
1 Test1 . 10. true .Very satisfied . 18-24 years old
2 2020-08-14 Test2 1 false Very dissatisfied 25-34 years old
3 .2020-08-1 4 Test3 5 true Neither satisfied or dissatisfi¢ 35-44 years old
4 .2020-08-1 7 Elliot King 8 true k Very satisfied 35-44 years old
5 .2020-08-1 7 Noel Hall 7 false Somewhat satisfied 18-24 years old
6 .2020-07-1 7 My name is Robert | 8 true Very satisfied 45-54 years old
7 .2020-08-1 8 Addison Lee 9 true Very satisfied 35-44 years old
8 .2020-08-1 8 Abed Glover 7 true Somewhat satisfied 25-34 years old
9 .2020-08-1 8 Avery Malone 6 false Somewhat satisfied 18-24 years old
10 .2020-08-1 8 Taylor Zhou 8 true Very satisfied 25-34 years old
" .2020-08-1 8 Sydney Jones 9 true Very satisfied 45-54 years old
12 .2020-08-1 8 Oakley Smith 8 true Very satisfied 45-54 years old
13 .2020-08-1 9 Skylar Lennon 7 true Somewhat satisfied 25-34 years old
14 .2020-08-1 9 Parker Holmes 7 false Neither satisfied or dissatisfi¢ 18-24 years old
15 .2020-08-1 9 Brooklyn Serrano 9 true Very satisfied 35-44 years old
16 .2020-08-1 9 Kyler Flores 7 false Neither satisfied or dissatisfi¢ 18-24 years old
17 .2020-08-1 9 Denver Anderson 5 false Somewhat dissatisfied 18-24 years old
18 .2020-08-1 9 Jules Young 7 true Somewhat satisfied 35-44 years old
19 .2020-08-20 Blake Ochoa 9 true Very satisfied 25-34 years old
20 .2020-08-20 Drew Donaldson 9 true Very satisfied 45-54 years old
21 .2020-08-20 Robin Lee 8 true Very satisfied 45-54 years old
22 :2020-08—20 Madison Posey 9 true Very satisfied 35-44 years old

4

_images/csvlauncher.gif
=
~

File Edit View Run Kernel Tabs Settings Help

]
o

¥ 0 « B

+ b c [Launcher
M /demo /
Name - Last Modified

Python 3

Console

-

Python 3

Other

Terminal

0 & Mem: 67.36/2048.00 MB

LN

Markdown File CSV File

Saving completed

B

Show
Contextual Help

Launcher

_images/searchandreplace.gif
: File Edit View Run Kernel Tabs Settings Help

. o * Cc H longrun-social-spending.cs X
s /demo /

o Name -
HE longrun-social-spending.csv

g Australia
Australia
9* Australia
Australia
Australia
Australia
Australia
Australia
Australia
Australia
Australia
Australia
Australia
Australia
Australia
Australia
Australia
Australia
Australia
Australia

Australia

Australia

0 B 0 @ Mem:67.78 / 2048.00 MB

Saving completed

1.12

1.66

21
5.93012553
6.333481916
6.285261018
6.199258799
5.976754619
6.059972782
5.921643458
5.652750976
5.676263156
5.849024071
5.914159614
6.211192705
6.638595805
7.012542058
8.39848658
10.15894538
10.59740856

Format Data (’

longrun-social-spending.csv

_static/file.png

nav.xhtml

 Table of Contents

 		
 JupyterLab Tabular Data Editor Documentation

 		
 Overview

 		
 Installation

 		
 Requirements

 		
 Install Nodejs

 		
 Install

 		
 Contributing

 		
 Install

 		
 Uninstall

 		
 Changelog

 		
 v1.0.0

 		
 v0.7.5

 		
 v0.7.4

 		
 v0.7.3

 		
 v0.7.2

 		
 v0.7.1

 		
 v0.7.0

 		
 v0.6.0

 		
 v0.5.0

 		
 v0.4.0

 		
 v0.3.0

 		
 v0.2.0

 		
 v0.1.0

 		
 User Experience

 		
 Toolbar

 		
 Context Menus

 		
 Keyboard Shortcuts

 		
 General extension shortcuts

 		
 Moving around in the datagrid

 		
 Selecting cells

 		
 Features

 		
 Launch new files and quickly add rows and columns

 		
 Seamlessly rearrange your data table

 		
 Insert and remove multiple rows and columns

 		
 Format your data with a click of a button

 		
 Search and replace with ease

 		
 Codebase Orientation

 		
 Directories

 		
 Source Code: src/

 		
 Binder setup: binder/

 		
 Demo: demo/

 		
 Design: design/

 		
 Documentation: docs/

 		
 Styling: style/

 		
 Testing: test/

 		
 Test Utilities: testutils/

 		
 Contributing to the Tabular Data Editor

 		
 General Guidelines for Contributing

 		
 Submitting a Pull Request Contribution

 		
 Issue Management

 		
 Setting Up a Development Environment

 		
 Installing Node.js and jlpm

 		
 Installing JupyterLab

 		
 Run JupyterLab

 		
 Run the Tests

 		
 Performance Testing

 		
 Using throttling

 		
 Comparing results

 		
 Debugging in the Browser

 		
 Writing Documentation

 		
 Writing Style

 		
 User Interface Naming Conventions

 		
 Testing Changes to External Packages

 		
 Linking/Unlinking Packages to JupyterLab

 		
 Possible Linking Pitfalls

 		
 Keyboard Shortcuts

 		
 Screenshots and Animations

 		
 Notes

_images/auto-format.gif
2 O B O

I

File Edit View Run Kernel

Tabs Settings Help

H survey-data.csv X
B~ XDODO Format Data
Name Likely to Recommend Met Expectations Customer Satisfaction Age -
Test1 10 true Very satisfied 18-24 years old L3
2 2020-08-14 Test2 1 false Very dissatisfied 25-34 years old
3 2020-08-14 Test3 5 true either satisfied or dissatisfie 35-44 years old
4 2020-08-17 Elliot King 8 true Very satisfied 35-44 years old
5 2020-08-17 Noel Hall i7 false Somewhat satisfied 18-24 years old
6 2020-07-17 My name is Robert Wright 8 true Very satisfied 45-54 years old
7 2020-08-18 Addison Lee 9 true Very satisfied 35-44 years old
8 2020-08-18 Abed Glover 7 true Somewhat satisfied 25-34 years old
9 2020-08-18 Avery Malone 6 false Somewhat satisfied 18-24 years old
10 2020-08-18 Taylor Zhou 8 true Very satisfied 25-34 years old
1 . 2020-08-18 Sydney Jones 9 true Very satisfied 45-54 years old
12 . 2020-08-18 Oakley Smith 8 true Very satisfied 45-54 years old
13 2020-08-19 Skylar Lennon 7 true Somewhat satisfied 25-34 years old
14 2020-08-19 Parker Holmes 7 false either satisfied or dissatisfie 18-24 years old
15 . 2020-08-19 Brooklyn Serrano 9 true Very satisfied 35-44 years old
16 2020-08-19 Kyler Flores 7 false either satisfied or dissatisfie 18-24 years old
17 2020-08-19 Denver Anderson 5 false Somewhat dissatisfied 18-24 years old
18 . 2020-08-19 Jules Young 7 true Somewhat satisfied 35-44 years old
19 . 2020-08-20 Blake Ochoa 9 true Very satisfied 25-34 years old
20 2020-08-20 Drew Donaldson 9 true Very satisfied 45-54 years old
21 2020-08-20 Robin Lee 8 true Very satisfied 45-54 years old
22 . 2020-08-20 Madison Posey 9 true Very satisfied 35-44 years old
+ -

0 0 & Mem: 65.98 / 2048.00 MB

Saving completed

survey-data.csv

_static/up-pressed.png

_static/minus.png

_images/Toolbar.png
Format Data

_static/plus.png

_static/up.png

